Model registry
Models
Scaden
Paper: Deep learning–based cell composition analysis from tissue expression profiles
Registered models
-
cti_dirichlet_2nd_granularity
... details dataset and model ...
Output Celltypes
B
,CD4T
,CD8T
,DC
,Mast
,Mono
,NK
,Plasma
,Tregs
TAPE
Registered models
-
cti_dirichlet_2nd_granularity
... details dataset and model ...
Output Celltypes
B
,CD4T
,CD8T
,DC
,Mast
,Mono
,NK
,Plasma
,Tregs
Signature based models
OLS
Paper:
from pydeconv.model import OLS
model = OLS(signature_matrix)
model.transform(adata, layer="tpm", ratio=True)
RLR
Paper:
from pydeconv.model import RLR
model = RLR(signature_matrix)
model.transform(adata, layer="tpm", ratio=True)
NNLS
from pydeconv.model import NNLS
model = NNLS(signature_matrix)
model.transform(adata, layer="tpm", ratio=True)
DWLS
Paper: Accurate estimation of cell-type composition from gene expression data
from pydeconv.model import DWLS
model = DWLS(signature_matrix)
model.transform(adata, layer="tpm", ratio=True)
WNNLS (MuSiC)
Paper: Bulk tissue cell type deconvolution with multi-subject single-cell expression reference