fedeca.algorithms¶
- class TorchWebDiscoAlgo(model, batch_size, *args, duration_col='T', event_col='E', treated_col=None, initial_step_size=0.95, learning_rate_strategy='lifelines', standardize_data=True, tol=1e-16, penalizer=0.0, l1_ratio=0.0, propensity_model=None, training_strategy='iptw', cox_fit_cols=None, propensity_fit_cols=None, store_hessian=False, with_batch_norm_parameters=False, use_gpu=True, robust=False, **kwargs)¶
Bases:
TorchAlgo
WebDiscoAlgo class.
- Parameters:
model (Module) –
batch_size (int | None) –
duration_col (str) –
event_col (str) –
treated_col (str) –
initial_step_size (float) –
learning_rate_strategy (str) –
standardize_data (bool) –
tol (float) –
penalizer (float) –
l1_ratio (float) –
propensity_model (Module) –
training_strategy (str) –
cox_fit_cols (None | list) –
propensity_fit_cols (None | list) –
store_hessian (bool) –
with_batch_norm_parameters (bool) –
use_gpu (bool) –
robust (bool) –
- compute_X_y_and_propensity_weights(data_from_opener, shared_state)¶
Build appropriate X, y and weights from raw output of opener.
Uses the helper function build_X_y and the propensity model to build the weights.
- compute_local_phi_stats(data_from_opener, shared_state=None)¶
Compute local updates.
- Parameters:
data_from_opener (
Any
) – _description_shared_state (
Optional[WebDiscoAveragedStates]
, optional) – _description_. Defaults to None.
- Returns:
_description_
- Return type:
WebDiscoSharedState
- local_uncentered_moments(data_from_opener, shared_state=None)¶
Compute the local uncentered moments.
This method is transformed by the decorator to meet Substra API, and is executed in the training nodes. See build_compute_plan.
- predict(data_from_opener, shared_state=None)¶
Predict function.
Execute the following operations:
Create the test torch dataset.
Execute and return the results of the
self._local_predict
method
- Parameters:
data_from_opener (
typing.Any
) – Input datashared_state (
typing.Any
) – Latest train task shared state (output of the train method)
- Return type:
- summary()¶
Summary of the class to be exposed in the experiment summary file.
- Returns:
A json-serializable dict with the attributes the user wants to store
- Return type:
- train(data_from_opener, shared_state=None)¶
Local train function.
- Parameters:
data_from_opener (
Any
) – _description_shared_state (
Optional[WebDiscoAveragedStates]
, optional) – description_. Defaults to None.
- Raises:
NotImplementedError – _description_
- Returns:
_description_
- Return type:
WebDiscoSharedState