Strategy
DESeq2Strategy
Bases: ComputePlanBuilder
, DESeq2FullPipe
DESeq2 strategy.
This strategy is an implementation of the DESeq2 algorithm.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
design_factors
|
str or list
|
Name of the columns of metadata to be used as design variables. If you are using categorical and continuous factors, you must put all of them here. |
required |
ref_levels
|
dict
|
An optional dictionary of the form |
None
|
continuous_factors
|
list
|
An optional list of continuous (as opposed to categorical) factors. Any factor
not in |
None
|
contrast
|
list
|
A list of three strings, in the following format:
|
None
|
lfc_null
|
float
|
The (log2) log fold change under the null hypothesis. (default: |
0.0
|
alt_hypothesis
|
str
|
The alternative hypothesis for computing wald p-values. By default, the normal
Wald test assesses deviation of the estimated log fold change from the null
hypothesis, as given by |
None
|
min_replicates
|
int
|
Minimum number of replicates a condition should have
to allow refitting its samples. (default: |
7
|
min_disp
|
float
|
Lower threshold for dispersion parameters. (default: |
1e-08
|
max_disp
|
float
|
Upper threshold for dispersion parameters.
Note: The threshold that is actually enforced is max(max_disp, len(counts)).
(default: |
10.0
|
grid_batch_size
|
int
|
The number of genes to put in each batch for local parallel processing.
(default: |
250
|
grid_depth
|
int
|
The number of grid interval selections to perform (if using GridSearch).
(default: |
3
|
grid_length
|
int
|
The number of grid points to use for the grid search (if using GridSearch).
(default: |
100
|
num_jobs
|
int
|
The number of jobs to use for local parallel processing in MLE tasks.
(default: |
8
|
independent_filter
|
bool
|
Whether to perform independent filtering to correct p-value trends.
(default: |
True
|
alpha
|
float
|
P-value and adjusted p-value significance threshold (usually 0.05).
(default: |
0.05
|
min_mu
|
float
|
The minimum value of the mean parameter mu. (default: |
0.5
|
beta_tol
|
float
|
The tolerance for the beta parameter. (default: |
1e-08
|
max_beta
|
float
|
The maximum value for the beta parameter. (default: |
30
|
irls_num_iter
|
int
|
The number of iterations to perform in the IRLS algorithm. (default: |
20
|
joblib_backend
|
str
|
The backend to use for parallel processing. (default: |
'loky'
|
joblib_verbosity
|
int
|
The verbosity level of joblib. (default: |
0
|
irls_batch_size
|
int
|
The number of genes to put in each batch for local parallel processing in the
IRLS algorithm. (default: |
100
|
PQN_c1
|
float
|
The Armijo line search constant for the prox newton. |
0.0001
|
PQN_ftol
|
float
|
The functional stopping criterion for the prox newton method (relative error smaller than ftol). |
1e-07
|
PQN_num_iters_ls
|
int
|
The number of iterations performed in the line search at each prox newton step. |
20
|
PQN_num_iters
|
int
|
The number of iterations in the prox newton catch of IRLS. |
100
|
PQN_min_mu
|
float
|
The minimum value for mu in the prox newton method. |
0.0
|
refit_cooks
|
bool
|
Whether to refit the model after computation of Cooks distance.
(default: |
True
|
cooks_filter
|
bool
|
Whether to filter out genes with high Cooks distance in the pvalue computation.
(default: |
True
|
save_layers_to_disk
|
bool
|
Whether to save the layers to disk. (default: |
False
|
trimmed_mean_num_iter
|
int
|
The number of iterations to use when computing the trimmed mean in a federated way, i.e. the number of dichotomy steps. The default is 40. |
40
|
Source code in fedpydeseq2/core/deseq2_strategy.py
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 |
|
num_round
property
Return the number of round in the strategy.
TODO do something clever with this.
Returns:
Type | Description |
---|---|
int
|
Number of round in the strategy. |
build_compute_plan(train_data_nodes, aggregation_node, evaluation_strategy=None, num_rounds=None, clean_models=True)
Build the computation graph to run a FedDESeq2 pipe.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
train_data_nodes
|
list[TrainDataNode]
|
List of the train nodes. |
required |
aggregation_node
|
AggregationNode
|
Aggregation node. |
required |
evaluation_strategy
|
EvaluationStrategy
|
Not used. |
None
|
num_rounds
|
int
|
Number of rounds. Not used. |
None
|
clean_models
|
bool
|
Whether to clean the models after the computation. (default: |
True
|
Source code in fedpydeseq2/core/deseq2_strategy.py
load_local_state(path)
Load the local state of the strategy.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
path
|
Path
|
Path to the file where to load the state from. Automatically handled by subtrafl. |
required |
Source code in fedpydeseq2/core/deseq2_strategy.py
save_local_state(path)
Save the local state of the strategy.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
path
|
Path
|
Path to the file where to save the state. Automatically handled by subtrafl. |
required |