Source code for plismbench.models.bioptimus

"""Models from Bioptimus company."""

from __future__ import annotations

from typing import Any

import numpy as np
import timm
import torch
from torchvision import transforms

from plismbench.models.extractor import Extractor
from plismbench.models.utils import DEFAULT_DEVICE, prepare_module


[docs] class H0Mini(Extractor): """H0-mini model developped by Owkin & Bioptimus available on Hugging-Face (1). You will need to be granted access to be able to use this model. .. note:: (1) https://huggingface.co/bioptimus/H0-mini Parameters ---------- device: int | list[int] | None = DEFAULT_DEVICE, Compute resources to use. If None, will use all available GPUs. If -1, extraction will run on CPU. mixed_precision: bool = True Whether to use mixed_precision. """ def __init__( self, device: int | list[int] | None = DEFAULT_DEVICE, mixed_precision: bool = False, ): super().__init__() self.mixed_precision = mixed_precision timm_kwargs: dict[str, Any] = { "mlp_layer": timm.layers.SwiGLUPacked, "act_layer": torch.nn.SiLU, } feature_extractor = timm.create_model( "hf-hub:bioptimus/H0-mini", pretrained=True, **timm_kwargs ) self.feature_extractor, self.device = prepare_module( feature_extractor, device, self.mixed_precision, ) if self.device is None: self.feature_extractor = self.feature_extractor.module @property # type: ignore def transform(self) -> transforms.Compose: """Transform method to apply element wise.""" return transforms.Compose( [ transforms.ToTensor(), # swap axes and normalize transforms.Normalize( mean=(0.707223, 0.578729, 0.703617), std=(0.211883, 0.230117, 0.177517), ), ] ) def __call__(self, images: torch.Tensor) -> np.ndarray: """Compute and return features. Parameters ---------- images: torch.Tensor Input of size (n_tiles, n_channels, dim_x, dim_y). Returns ------- torch.Tensor: Tensor of size (n_tiles, features_dim). """ features = self.feature_extractor(images.to(self.device)) features = features[:, 0] # return cls token only # Concatenate with mean of patch tokens: # class_token = outputs[:, 0, :] # patch_tokens = output[:, 5:, :] # features = torch.cat([class_token, patch_tokens.mean(1)], dim=-1) return features.cpu().numpy()