Source code for plismbench.models.bioptimus
"""Models from Bioptimus company."""
from __future__ import annotations
from typing import Any
import numpy as np
import timm
import torch
from torchvision import transforms
from plismbench.models.extractor import Extractor
from plismbench.models.utils import DEFAULT_DEVICE, prepare_module
[docs]
class H0Mini(Extractor):
"""H0-mini model developped by Owkin & Bioptimus available on Hugging-Face (1).
You will need to be granted access to be able to use this model.
.. note::
(1) https://huggingface.co/bioptimus/H0-mini
Parameters
----------
device: int | list[int] | None = DEFAULT_DEVICE,
Compute resources to use.
If None, will use all available GPUs.
If -1, extraction will run on CPU.
mixed_precision: bool = True
Whether to use mixed_precision.
"""
def __init__(
self,
device: int | list[int] | None = DEFAULT_DEVICE,
mixed_precision: bool = False,
):
super().__init__()
self.mixed_precision = mixed_precision
timm_kwargs: dict[str, Any] = {
"mlp_layer": timm.layers.SwiGLUPacked,
"act_layer": torch.nn.SiLU,
}
feature_extractor = timm.create_model(
"hf-hub:bioptimus/H0-mini", pretrained=True, **timm_kwargs
)
self.feature_extractor, self.device = prepare_module(
feature_extractor,
device,
self.mixed_precision,
)
if self.device is None:
self.feature_extractor = self.feature_extractor.module
@property # type: ignore
def transform(self) -> transforms.Compose:
"""Transform method to apply element wise."""
return transforms.Compose(
[
transforms.ToTensor(), # swap axes and normalize
transforms.Normalize(
mean=(0.707223, 0.578729, 0.703617),
std=(0.211883, 0.230117, 0.177517),
),
]
)
def __call__(self, images: torch.Tensor) -> np.ndarray:
"""Compute and return features.
Parameters
----------
images: torch.Tensor
Input of size (n_tiles, n_channels, dim_x, dim_y).
Returns
-------
torch.Tensor: Tensor of size (n_tiles, features_dim).
"""
features = self.feature_extractor(images.to(self.device))
features = features[:, 0] # return cls token only
# Concatenate with mean of patch tokens:
# class_token = outputs[:, 0, :]
# patch_tokens = output[:, 5:, :]
# features = torch.cat([class_token, patch_tokens.mean(1)], dim=-1)
return features.cpu().numpy()