Source code for plismbench.models.meta

"""Models from Meta company."""

from __future__ import annotations

import numpy as np
import torch
from torchvision import transforms

from plismbench.models.extractor import Extractor
from plismbench.models.utils import DEFAULT_DEVICE, prepare_module


[docs] class Dinov2ViTGiant(Extractor): """ViT-giant model trained with DINOv2 with 4 registers on ImageNet (1). .. note:: (1) https://github.com/facebookresearch/dinov2?tab=readme-ov-file Parameters ---------- device: int | list[int] | None = DEFAULT_DEVICE, Compute resources to use. If None, will use all available GPUs. If -1, extraction will run on CPU. mixed_precision: bool = True Whether to use mixed_precision. """ def __init__( self, device: int | list[int] | None = DEFAULT_DEVICE, mixed_precision: bool = False, ): super().__init__() self.output_dim = 1536 self.mixed_precision = mixed_precision feature_extractor = torch.hub.load( "facebookresearch/dinov2", "dinov2_vitg14_reg", verbose=True ) self.feature_extractor, self.device = prepare_module( feature_extractor, device, self.mixed_precision, ) if self.device is None: self.feature_extractor = self.feature_extractor.module @property # type: ignore def transform(self) -> transforms.Compose: """Transform method to apply element wise.""" return transforms.Compose( [ transforms.ToTensor(), # swap axes and normalize transforms.Normalize( mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225), ), ] ) def __call__(self, images: torch.Tensor) -> np.ndarray: """Compute and return features. Parameters ---------- images: torch.Tensor Input of size (n_tiles, n_channels, dim_x, dim_y). Returns ------- torch.Tensor: Tensor of size (n_tiles, features_dim). """ features = self.feature_extractor(images.to(self.device)) return features.cpu().numpy()