Source code for plismbench.models.standford
"""Models from Stanford University School of Medicine."""
from __future__ import annotations
import numpy as np
import torch
from torchvision import transforms
from transformers import AutoModelForZeroShotImageClassification, AutoProcessor
from plismbench.models.extractor import Extractor
from plismbench.models.utils import DEFAULT_DEVICE, prepare_module
[docs]
class PLIP(Extractor):
"""Plip model developped by Stanford University School of Medicine, Stanford, CA (1).
.. note::
(1) https://huggingface.co/vinid/plip
Parameters
----------
device: int | list[int] | None = DEFAULT_DEVICE,
Compute resources to use.
If None, will use all available GPUs.
If -1, extraction will run on CPU.
mixed_precision: bool = True
Whether to use mixed_precision.
"""
def __init__(
self,
device: int | list[int] | None = DEFAULT_DEVICE,
mixed_precision: bool = False,
):
super().__init__()
self.output_dim = 512
self.mixed_precision = mixed_precision
self.processor = AutoProcessor.from_pretrained("vinid/plip")
feature_extractor = AutoModelForZeroShotImageClassification.from_pretrained(
"vinid/plip"
)
self.feature_extractor, self.device = prepare_module(
feature_extractor,
device,
self.mixed_precision,
)
if self.device is None:
self.feature_extractor = self.feature_extractor.module
[docs]
def process(self, image) -> torch.Tensor:
"""Process input images."""
plip_input = self.processor(images=image, return_tensors="pt")
return plip_input["pixel_values"][0]
@property # type: ignore
def transform(self) -> transforms.Lambda:
"""Transform method to apply element wise."""
return transforms.Lambda(self.process)
def __call__(self, images: torch.Tensor) -> np.ndarray:
"""Compute and return features.
Parameters
----------
images: torch.Tensor
Input of size (n_tiles, n_channels, dim_x, dim_y).
Returns
-------
torch.Tensor: Tensor of size (n_tiles, features_dim).
"""
features = self.feature_extractor.module.get_image_features( # type: ignore
images.to(self.device)
)
return features.cpu().numpy()