Source code for plismbench.models.standford

"""Models from Stanford University School of Medicine."""

from __future__ import annotations

import numpy as np
import torch
from torchvision import transforms
from transformers import AutoModelForZeroShotImageClassification, AutoProcessor

from plismbench.models.extractor import Extractor
from plismbench.models.utils import DEFAULT_DEVICE, prepare_module


[docs] class PLIP(Extractor): """Plip model developped by Stanford University School of Medicine, Stanford, CA (1). .. note:: (1) https://huggingface.co/vinid/plip Parameters ---------- device: int | list[int] | None = DEFAULT_DEVICE, Compute resources to use. If None, will use all available GPUs. If -1, extraction will run on CPU. mixed_precision: bool = True Whether to use mixed_precision. """ def __init__( self, device: int | list[int] | None = DEFAULT_DEVICE, mixed_precision: bool = False, ): super().__init__() self.output_dim = 512 self.mixed_precision = mixed_precision self.processor = AutoProcessor.from_pretrained("vinid/plip") feature_extractor = AutoModelForZeroShotImageClassification.from_pretrained( "vinid/plip" ) self.feature_extractor, self.device = prepare_module( feature_extractor, device, self.mixed_precision, ) if self.device is None: self.feature_extractor = self.feature_extractor.module
[docs] def process(self, image) -> torch.Tensor: """Process input images.""" plip_input = self.processor(images=image, return_tensors="pt") return plip_input["pixel_values"][0]
@property # type: ignore def transform(self) -> transforms.Lambda: """Transform method to apply element wise.""" return transforms.Lambda(self.process) def __call__(self, images: torch.Tensor) -> np.ndarray: """Compute and return features. Parameters ---------- images: torch.Tensor Input of size (n_tiles, n_channels, dim_x, dim_y). Returns ------- torch.Tensor: Tensor of size (n_tiles, features_dim). """ features = self.feature_extractor.module.get_image_features( # type: ignore images.to(self.device) ) return features.cpu().numpy()