plismbench.utils.metrics module#
Aggregation of robustness metrics across different extractors.
- plismbench.utils.metrics.get_extractor_results(results_path: Path) DataFrame [source]#
Get robustness results for a given extractor.
- plismbench.utils.metrics.get_results(metrics_root_dir: Path, n_tiles: int = 8139) DataFrame [source]#
Get robustness results for all extractors and a given number of tiles.
- plismbench.utils.metrics.format_results(metrics_root_dir: Path, agg_type: str = 'median', n_tiles: int = 8139, top_k: list[int] | None = None) DataFrame [source]#
Add float columns with parsed metrics wrt an aggregation type (“mean” or “median”).
- plismbench.utils.metrics.rank_results(results: DataFrame, robustness_type: str = 'all', metric_name: str = 'top_1_accuracy_median') DataFrame [source]#
Rank results according to a robustness type and metric name.